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A simple metal-free, step-economic and selective access to pyr-

idines from readily available substrates is reported, involving a

flexible 4 Å molecular sieves promoted Michael addition initiated

domino three-component reaction between a 1,3-dicarbonyl, a

Michael acceptor and a synthetic equivalent of ammonia.

Pyridines are one of the most important nitrogen heterocycles

found in numerous natural and synthetic pharmaceutical

agents.1 These scaffolds are also of widespread interest in

coordination and supramolecular chemistry, as well as for

materials science.2 The synthesis of these heterocycles has long

been an area of intense interest resulting in the development of

a wide range of synthetic methods.3 Among them, the direct

condensation of carbonyl compounds with a source of ammo-

nia is well documented,4 but still suffers from some limitations

in the substrates,5 or involves an oxidative agent6 or an

elimination step.7 Thereby, development of valuable synthetic

pathways still remains an industrial as well as an academic

challenge.8 In this context, the metal-catalysed [2+2+2]

cycloisomerisation of alkynes with nitriles largely leads the

way nowadays.9 However, despite recent spectacular ad-

vances,10 the low availability of some catalysts and substrates

associated with the lack of regioselectivity11 constitute major

drawbacks.

In the course of our studies on the development of new

domino12 multicomponent reactions (MCRs)13 for creation of

molecular complexity and diversity14 whilst combining eco-

nomic aspects15 with environmental ones,16 we recently re-

ported molecular sieves-promoted transformations of various

1,3-dicarbonyls17 for the stereoselective synthesis of a series of

heterocycles.18 In this context, herein we wish to report on a

simple metal-free, step-economic and selective access to pyr-

idines from readily available substrates. Thus, we have now

designed a flexible domino three-component reaction invol-

ving the direct condensation of 1,3-dicarbonyls 1 with Michael

acceptors 2 and a synthetic equivalent of ammonia 3, under

heterogeneous catalysis by 4 Å molecular sieves (MS),

providing after in situ oxidation the corresponding pyridine

derivatives 4 in a single operation (Scheme 1).19

Due to the nature of the three partners, this strategy may be

viewed as a Michael addition initiated biomimetic approach

previously formulated by Baldwin andMarazano20 for natural

3-alkylpyridinium salts.

Preliminary experiments were conducted with easily avail-

able acyclic 1,3-dicarbonyls 1a–e and Michael acceptors 2a–c.

Under optimised conditions, NH4OAc proved to be the best

source of ammonia21 and the corresponding pyridines 4a–j

were obtained by simply heating a toluene solution of the three

partners in the presence of 4 Å MS,22 acting both as dehydra-

ting agent and as heterogeneous catalyst as shown before.18a

The general applicability is clearly seen from the results

reported in Table 1. Acrolein (2a) (entries 1, 4, 8, 10) and

methacrolein (2b) (entries 2, 5, 7) may be used, as well as

methyl vinyl ketone (2c) (entries 3, 6, 9). Similarly, diversity

may be acceded through the use (Fig. 1) of either acetylacetone

(1a) (entries 1–3), methyl acetoacetate (1b) (entries 4–6) or

ethyl 4,4,4-trifluoroacetoacetate (1c) (entry 7). Interestingly

enough, b-ketoamide 1d led to the expected pyridines 4h and 4i

(entries 8 and 9), making this transformation a direct and user-

friendly one-pot access to nicotinamide derivatives. Finally,

this multicomponent reaction appears as a promising

new strategy for the direct metal-free synthesis of bi-aryl

Scheme 1 MCR synthesis of polysubstituted pyridines 4.

Fig. 1 Acyclic 1,3-dicarbonyl substrates 1 for the MCR.

Fig. 2 Bi- and tricyclic pyridines from the MCR.
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compounds from substrates such as 1e (entry 10), opening the

way to a flexible design of atropoisomers of bi-aryl ligands.23

To further demonstrate the versatility of the method, we

then examined the use of cyclic 1,3-dicarbonyls such as

dimedone (1f) or indane-1,3-dione (1g) in the sequence, and

some representative bi- and tricyclic pyridines are shown in

Fig. 2. In all cases, products are obtained with a total regio-

selectivity. Of particular interest is the one-pot synthesis of

4-azafluorenones 4m and 4n, which are common skeletons in

natural products and molecules of pharmacological interest,24

and generally accessed via multistep sequences.25

The neutral heterogeneous reaction conditions are also

suitable with sensitive Michael acceptors such as a-exo-methy-

lene ketones 2d–f,26 leading to bi- and tricyclic pyridines 4o–q

in acceptable yields (Fig. 3).

From a mechanistic point of view, two multistep sequences

have been preliminarily explored. Both evolve through a

1,4-dihydropyridine intermediate 7 which suffers an in situ

oxidative aromatisation to the corresponding pyridine.27 We

initially postulated that the first step of the sequence may be

the molecular sieves promoted Michael addition between

substrates 1 and acceptors 2. The corresponding adduct 5

may then react with ammonium acetate (3) leading to the

dihydropyridine 7 via an intramolecular dehydrative cyclisa-

tion sequence. As a validation of this first hypothesis, pyridine

4c was isolated by mixing the Michael adduct 5a
28 with 3

under standard conditions (Scheme 2). Alternatively, a more

conventional mechanistic pathway could involve the prelimin-

ary formation of an enamino ketone intermediate 6, which

may lead to the final product via a Hantzsch-type reaction.29

Interestingly enough, when 6, independently prepared from

NH4OAc and acetylacetone (1a), was reacted with methyl

vinyl ketone (2c), pyridine 4c was not formed and starting

materials were recovered even after 24 hours (Scheme 2).

These preliminary results support our original mechanistic

proposal involving a 4 Å MS initiated Michael addition30 as

the first step of the sequence.31

In conclusion, we have developed a regioselective, user-

friendly and mechanistically original three-component reac-

tion for the one-pot synthesis of polysubstituted pyridines

from readily accessible substrates. The biomimetic like se-

quence does not require any harmful reagents or metal-based

catalysts, and allows construction of highly functionalised

heterocycles of both biological and synthetic interest. This

pyridine approach should be a good and complementary

substrate directed synthetic alternative to other well known

methods.
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